skip to main content


Search for: All records

Creators/Authors contains: "Qi, Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We proposed and demonstrated an alignment simplified FSO system that enable the coexistence of radio spectrum. The FSO channel functions as a reference to cancel the interference without pre-known motion pattern of mobile receiver.

     
    more » « less
  2. We propose a system that cancels LiDAR interference signals in real time. This system uses blind source separation to separate signals in the same bandwidth, and is compatible with electro-optical analog circuitry.

     
    more » « less
  3. We proposed and experimentally demonstrated a free-space optical stealth communication system that hides the stealth signal in wide-band spontaneous emission noise. Spontaneous emission light sources have been widely used for illuminations and has been recently deployed for short distance and indoor free-space optical communications, such as LiFi. Since free-space optical communication is a broadcasting network, the users’ privacy is exposed to eavesdropping attacks. In this paper, stealth communication is achieved by taking advantage of the existing properties of spontaneous emission light sources, random phase fluctuations, and protects users’ privacy in free-space communication networks. The keys to hide and recover the stealth signal are the optical delays at the transmitter and receiver. Only by matching the delay length with the pre-shared keys can the authorized receiver recover the stealth signal. Without the right key, the eavesdropper receives a constant power that is the same as illumination light sources and cannot detect the existence of the stealth signal.

     
    more » « less
  4. We design and experimentally demonstrate a wideband interference management system for free space optical communication using photonic blind source separation and photonic signal processing to achieve real-time interference cancellation up to 3 GHz.

     
    more » « less
  5. We propose and experimentally demonstrate an optical pulse sampling method for photonic blind source separation. The photonic system processes and separates wideband signals based on the statistical information of the mixed signals, and thus the sampling frequency can be orders of magnitude lower than the bandwidth of the signals. The ultra-fast optical pulses collect samples of the signals at very low sampling rates, and each sample is short enough to maintain the statistical properties of the signals. The low sampling frequency reduces the workloads of the analog to digital conversion and digital signal processing systems. In the meantime, the short pulse sampling maintains the accuracy of the sampled signals, so the statistical properties of the under-sampled signals are the same as the statistical properties of the original signals. The linear power range measurement shows that the sampling system with ultra-narrow optical pulse achieves a 30dB power dynamic range. 
    more » « less
  6. We propose and prove a family of generalized Lieb-Schultz-Mattis~(LSM) theorems for symmetry protected topological~(SPT) phases on boson/spin models in any dimensions.The ``conventional'' LSM theorem, applicable to e.g. any translation invariant system with an odd number of spin-1/2 particles per unit cell, forbids a symmetric short-range-entangled ground state in such a system.Here we focus on systems with no LSM anomaly, where global/crystalline symmetries and fractional spins within the unit cell ensure that any symmetric SRE ground state must be a non-trivial SPT phase with anomalous boundary excitations.Depending on models, they can be either strong or ``higher-order'' crystalline SPT phases, characterized by non-trivial surface/hinge/corner states.Furthermore, given the symmetry group and the spatial assignment of fractional spins, we are able to determine all possible SPT phases for a symmetric ground state, using the real space construction for SPT phases based on the spectral sequence of cohomology theory.We provide examples in one, two and three spatial dimensions, and discuss possible physical realization of these SPT phases based on condensation of topological excitations in fractionalized phases. 
    more » « less
  7. We proposed and demonstrated an optical pulse sampling method for photonic blind source separation. It can separate large bandwidth of mixed signals by small sampling frequency, which can reduce the workload of digital signal processing.

     
    more » « less